Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664801

RESUMO

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Assuntos
Caveolina 1 , Dieta Hiperlipídica , Células Endoteliais , Endotélio Vascular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Células Cultivadas , Esterol Esterase/metabolismo , Esterol Esterase/genética , Camundongos Knockout , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Transdução de Sinais , Camundongos , Aorta/enzimologia , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Óxido Nítrico/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Ubiquitinação
2.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L48-L57, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35672011

RESUMO

The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is composed of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) the PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.


Assuntos
Antígenos de Neoplasias , Anidrase Carbônica IX , Células Endoteliais , Pulmão , Acidose/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral
3.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491615

RESUMO

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Assuntos
Caspase 8 , Células Endoteliais , Mucosa Intestinal , Animais , Caspase 8/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Enterite/enzimologia , Enterite/patologia , Homeostase , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/enzimologia , Intestino Delgado/patologia , Camundongos
4.
Sci Rep ; 12(1): 1655, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102202

RESUMO

To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.


Assuntos
Encéfalo/irrigação sanguínea , Movimento Celular , Células Endoteliais/enzimologia , Neovascularização Fisiológica , Receptores Notch/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Notch/genética , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/genética
5.
Turk J Haematol ; 39(1): 13-21, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34981912

RESUMO

Objective: Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) have a high propensity for thrombosis, which has been attributed to increased blood counts, endothelial cell (EC) dysfunction, and inflammation. The presence of the JAK2V617F mutation in the ECs of MPN patients has been confirmed, but the consequences of EC involvement by JAK2V617F in the pathogenesis of thrombosis are unclear. Endothelial microparticles (EMPs) released from ECs play an important role in endothelial dysfunction and also in the intercellular exchange of biological signals and information. Several studies have revealed that patients with JAK2V617F and a thrombosis history have increased numbers of MPs in their circulation. Materials and Methods: The current study utilized a lentiviral transduction model of JAK2 wild type (JAK2wt) or JAK2V617F encoding green fluorescent protein (GFP) into human umbilical vein ECs to determine the effect of JAK2V617F on ECs. EC infected with JAK2V617F, JAK2WT, and only-GFP were tested after two days of culture. Results: The proteins of ECs that potentially play a role in the development of thrombosis, including endothelial protein C receptor, thrombomodulin, and tissue factor, were detected by flow cytometry analysis with no statistical significance. Increased annexin-V uptake of JAK2V617F and JAK2wt ECs compared to GFP-alone ECs was detected. The EMP production in the supernatants of the EC culture was investigated. Genotyping of the EMPs revealed the presence of genomic DNA and RNA fragments in EMP cargos. JAK2V617F-positive DNA was detected in EMPs released from JAK2V617F-infected ECs and EMPs were shown to carry the genotype of the cell of origin. Conclusion: JAK2V617F-positive EMPs were shown for the first time in the literature. This novel research provides the first evidence that EMPs might regulate neighboring and distant cells via their cargo materials. Thus, the direct effect of JAK2V617F on ECs and their functions suggests that different mechanisms might play a role in the pathogenesis of thrombosis in MPNs.


Assuntos
Apoptose , Micropartículas Derivadas de Células , Células Endoteliais , Janus Quinase 2 , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/enzimologia , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Trombose/genética
6.
Life Sci ; 294: 120355, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35093339

RESUMO

AIM: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, inflammatory responses and fibrosis. Our previous studies provided evidence that group IVA phospholipase A2 (IVA-PLA2), a key PLA2 isozyme in the arachidonic acid cascade, is involved in the development of NASH. However, which types of cells are critical for the IVA-PLA2-dependent onset and progression of NASH is unclear. We elucidated the effects of the cell-type-specific deficiency of IVA-PLA2 in mice on the development of NASH. MAIN METHODS: Cell-type-specific IVA-PLA2-conditional knockout (cKO) mice and littermate controls were fed a choline-deficient, L-amino-acid-defined, high-fat diet with 0.1% methionine as a NASH model. The degree of hepatic fibrosis was evaluated by staining with picric acid-Sirius red, and the number of activated hepatic stellate cells was determined by immunoblotting and immunostaining for α-smooth muscle actin. Sinusoidal capillarization was analyzed by scanning electron microscopy. KEY FINDINGS: The deposition of collagen and number of activated hepatic stellate cells were markedly reduced in endothelial cell/liver sinusoidal endothelial cell (EC/LSEC)-specific IVA-PLA2 cKO mice but not in hepatocyte-, monocyte/macrophage-, or hepatic stellate cell-specific IVA-PLA2 cKO mice. In addition, EC/LSEC-specific IVA-PLA2-deficient mice showed more fenestrae than control mice fed a CDAHFD, indicating suppression of sinusoidal capillarization. SIGNIFICANCE: These results suggest that ECs/LSECs contribute to the IVA-PLA2-dependent onset and/or progression of NASH. Endothelial IVA-PLA2 is a promising factor for promoting sinusoidal capillarization and the ensuing HSC activation and fibrosis; thus IVA-PLA2 in ECs/LSECs is a potential therapeutic target for NASH.


Assuntos
Capilares/patologia , Células Endoteliais/patologia , Fosfolipases A2 do Grupo IV/fisiologia , Cirrose Hepática/patologia , Neovascularização Patológica/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Capilares/enzimologia , Células Endoteliais/enzimologia , Cirrose Hepática/enzimologia , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/enzimologia
7.
Am J Physiol Cell Physiol ; 322(3): C338-C353, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044858

RESUMO

The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension. Herein, we show that HDACi increase KCa2.3 expression when heterologously expressed in HEK cells and endogenously expressed in primary cultures of human umbilical vein endothelial cells (HUVECs) and human intestinal microvascular endothelial cells (HIMECs). When primary endothelial cells were exposed to HDACi, KCa2.3 transcripts, subunits, and functional current are increased. Quantitative RT-PCR (qPCR) demonstrated increased KCa2.3 mRNA following HDACi, confirming transcriptional regulation of KCa2.3 by HDACs. By using pharmacological agents selective for different classes of HDACs, we discriminated between cytoplasmic and epigenetic modulation of KCa2.3. Biochemical analysis revealed an association between the cytoplasmic HDAC6 and KCa2.3 in immunoprecipitation studies. Specifically inhibiting HDAC6 increases expression of KCa2.3. In addition to increasing the expression of KCa2.3, we show that nonspecific inhibition of HDACs causes an increase in the expression of the molecular chaperone Hsp70 in endothelial cells. When Hsp70 is inhibited in the presence of HDACi, the magnitude of the increase in KCa2.3 expression is diminished. Finally, we show a slower rate of endocytosis of KCa2.3 as a result of exposure of primary endothelial cells to HDACi. These data provide the first demonstrated approach to increase KCa2.3 channel number in endothelial cells and may partially account for the mechanism by which HDACi induce vasorelaxation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Intestinos/irrigação sanguínea , Microvasos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Endocitose , Células Endoteliais/enzimologia , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Desacetilase 6 de Histona/metabolismo , Humanos , Potenciais da Membrana , Microvasos/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Regulação para Cima , Vasodilatação
8.
Arterioscler Thromb Vasc Biol ; 42(1): 19-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789002

RESUMO

OBJECTIVE: Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. CONCLUSIONS: These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.


Assuntos
Células Endoteliais/enzimologia , Heme Oxigenase-1/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Telomerase/metabolismo , Animais , Células Cultivadas , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fluxo Sanguíneo Regional , Estresse Mecânico , Telomerase/genética
9.
J Pathol ; 256(2): 235-247, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743335

RESUMO

A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Melanoma Experimental/enzimologia , Neovascularização Fisiológica , Neoplasias Cutâneas/enzimologia , Inibidores da Angiogênese/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Humanos , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Carga Tumoral
10.
Adipocyte ; 11(1): 28-33, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957913

RESUMO

Oxidative tissues such as brown adipose tissue and muscle internalize large amounts of circulating lipids and glucose as energy source. Endothelial cells (ECs) provide a platform for regulated transport and processing of blood-borne nutrients. Next to this role, it has become recognized that intercellular crosstalk between ECs and underlying parenchymal cells is indispensable for maintenance of tissue homoeostasis. Here, we comment on our recent observation that capillary ECs in thermogenic adipose tissues take up and metabolize entire triglyceride-rich lipoprotein (TRL) particles in response to cold exposure. This process is dependent on CD36, lipoprotein lipase (LPL) and lysosomal acid lipase (LAL). Remarkably, loss of LAL specifically in endothelial cells results in impaired endothelial proliferation and diminished thermogenic adaptation. Mechanistically, cell culture experiments indicate that LAL-mediated TRL processing leads to the generation of reactive oxygen species, which in turn activate hypoxia-induced factor (HIF)-mediated proliferative responses. In the current manuscript, we provide in vivo evidence that LAL-deficiency impairs proliferation of endothelial cells in thermogenic adipose tissue. In addition, we show uptake of nanoparticle-labelled TRL and LAL expression in cardiac endothelial cells, suggesting a physiological function of endothelial lipoprotein processing not only in thermogenic adipose tissue but also in cardiac muscle.


Assuntos
Proliferação de Células , Temperatura Baixa , Células Endoteliais/citologia , Esterol Esterase , Tecido Adiposo Marrom , Células Endoteliais/enzimologia , Humanos , Esterol Esterase/metabolismo , Termogênese , Doença de Wolman
11.
Cardiovasc Res ; 118(1): 254-266, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33483748

RESUMO

AIMS: Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA. METHODS AND RESULTS: Endothelium-dependent relaxations to acetylcholine were reduced in aortae of two tumour necrosis factor alpha (TNFα) transgenic mouse lines with either mild (Tg3647) or severe (Tg197) forms of RA in a time- and severity-dependent fashion as assessed by organ chamber myograph. In Tg197, TNFα plasma levels were associated with severe endothelial dysfunction. LOX-1 receptor was markedly up-regulated leading to increased vascular oxLDL uptake and NFκB-mediated enhanced Arg2 expression via direct binding to its promoter resulting in reduced NO bioavailability and vascular cGMP levels as shown by ELISA and chromatin immunoprecipitation. Anti-TNFα treatment with infliximab normalized endothelial function together with LOX-1 and Arg2 serum levels in mice. In RA patients, soluble LOX-1 serum levels were also markedly increased and closely related to serum levels of C-reactive protein. Similarly, ARG2 serum levels were increased. Similarly, anti-TNFα treatment restored LOX-1 and ARG2 serum levels in RA patients. CONCLUSIONS: Increased TNFα levels not only contribute to RA, but also to endothelial dysfunction by increasing vascular oxLDL content and activation of the LOX-1/NFκB/Arg2 pathway leading to reduced NO bioavailability and decreased cGMP levels. Anti-TNFα treatment improved both articular symptoms and endothelial function by reducing LOX-1, vascular oxLDL, and Arg2 levels.


Assuntos
Aorta Torácica/efeitos dos fármacos , Arginase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Receptores Depuradores Classe E/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação/efeitos dos fármacos , Adulto , Animais , Animais Geneticamente Modificados , Aorta Torácica/enzimologia , Aorta Torácica/imunologia , Aorta Torácica/fisiopatologia , Arginase/genética , Artrite Reumatoide/enzimologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores Depuradores Classe E/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
12.
BMC Cardiovasc Disord ; 21(1): 603, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922451

RESUMO

BACKGROUND: Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells. METHODS: Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. RESULTS: Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. CONCLUSIONS: Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases.


Assuntos
Aorta/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glutationa/metabolismo , Glioxal/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aorta/enzimologia , Aorta/patologia , Células Cultivadas , Dano ao DNA , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Transdução de Sinais , Tiorredoxinas/metabolismo
13.
Cells ; 10(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34944016

RESUMO

Excessive inflammation in the lung is a primary cause of acute respiratory distress syndrome (ARDS). CD26/dipeptidyl peptidase-4 (DPP4) is a transmembrane protein that is expressed in various cell types and exerts multiple pleiotropic effects. We recently reported that pharmacological CD26/DPP4 inhibition ameliorated lipopolysaccharide (LPS)-induced lung injury in mice and exerted anti-inflammatory effects on human lung microvascular endothelial cells (HLMVECs), in vitro. However, the mechanistic roles of CD26/DPP4 in lung injury and its effects on HLMVECs remain unclear. In this study, transcriptome analysis, followed by various confirmation experiments using siRNA in cultured HLMVECs, are performed to evaluate the role of CD26/DPP4 in response to the pro-inflammatory involved in inflammation, barrier function, and regenerative processes in HLMVECs after pro-inflammatory stimulation. These are all functions that are closely related to the pathophysiology and repair process of lung injury. Confirmatory experiments using flow cytometry; enzyme-linked immunosorbent assay; quantitative polymerase chain reaction; dextran permeability assay; WST-8 assay; wound healing assay; and tube formation assay, reveal that the reduction of CD26/DPP4 via siRNA is associated with altered parameters of inflammation, barrier function, and the regenerative processes in HLMVECs. Thus, CD26/DPP4 can play a pathological role in mediating injury in pulmonary endothelial cells. CD26/DPP4 inhibition can be a new therapeutic strategy for inflammatory lung diseases, involving pulmonary vascular damage.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Células Endoteliais/enzimologia , Inflamação/patologia , Pulmão/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
14.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750583

RESUMO

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/enzimologia , Linfangiogênese , Vasos Linfáticos/enzimologia , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Vasos Linfáticos/embriologia , RNA Ribossômico/genética , Ribossomos/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
J Cardiovasc Pharmacol ; 78(Suppl 6): S63-S77, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34840264

RESUMO

ABSTRACT: SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.


Assuntos
Senescência Celular , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Sirtuína 1/metabolismo , Doenças Vasculares/enzimologia , Animais , Senescência Celular/efeitos dos fármacos , Suplementos Nutricionais , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Regulação Enzimológica da Expressão Gênica , Estilo de Vida Saudável , Humanos , Terapia de Alvo Molecular , Rejuvenescimento , Comportamento de Redução do Risco , Transdução de Sinais , Sirtuína 1/genética , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia , Doenças Vasculares/prevenção & controle
16.
Placenta ; 115: 129-138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619429

RESUMO

INTRODUCTION: The human placenta performs multiple functions necessary for successful pregnancy, but the metabolic pathways and molecular mechanisms responsible for regulating placental development and functions remain incompletely understood. Catabolism of the essential amino acid tryptophan has numerous critical roles in normal physiology, including inflammation. The kynurenine pathway, which accounts for ∼90% of tryptophan breakdown, is mediated by indoleamine 2,3 dioxygenase 1 (IDO1) in the placenta. In pregnant mice, alterations of IDO1 activity or expression result in fetal resorption and a preeclampsia-like phenotype. Decreased IDO1 expression at the maternal-fetal interface has also been linked to preeclampsia, in utero growth restriction and recurrent miscarriage in humans. These collective observations suggest essential role(s) for IDO1 in maintaining healthy pregnancy. Despite these important roles, the precise temporal, cell-specific and inflammatory cytokine-mediated patterns of IDO1 expression in the human placenta have not been thoroughly characterized across gestation. METHODS: Western blot and whole mount immunofluorescence (WMIF) were utilized to characterize and quantify basal and interferon (IFN)-inducible IDO1 expression in 1st trimester (7-13 weeks), 2nd trimester (14-22 weeks) and term (39-41 weeks) placental villi. RESULTS: IDO1 expression is activated in the human placenta between the 13th and 14th weeks of pregnancy, increases through the 2nd trimester and remains elevated at term. Constitutive IDO1 expression is restricted to placental endothelial cells. Interestingly, different types of IFNs have distinct effects on IDO1 expression in the human placenta. DISCUSSION: Our collective results are consistent with potential role(s) for IDO1 in the regulation of vascular functions in placental villi.


Assuntos
Indução Enzimática/efeitos dos fármacos , Idade Gestacional , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Interferons/farmacologia , Placenta/enzimologia , Vilosidades Coriônicas/enzimologia , Células Endoteliais/enzimologia , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Gravidez
17.
J Biol Chem ; 297(5): 101281, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624311

RESUMO

As a major component of the extracellular matrix, hyaluronan (HA) plays an important role in defining the biochemical and biophysical properties of tissues. In light of the extremely rapid turnover of HA and the impact of this turnover on HA biology, elucidating the molecular mechanisms underlying HA catabolism is key to understanding the in vivo functions of this unique polysaccharide. Here, we show that TMEM2, a recently identified cell surface hyaluronidase, plays an essential role in systemic HA turnover. Employing induced global Tmem2 knockout mice (Tmem2iKO), we determined the effects of Tmem2 ablation not only on the accumulation of HA in bodily fluids and organs, but also on the process of HA degradation in vivo. Within 3 weeks of tamoxifen-induced Tmem2 ablation, Tmem2iKO mice exhibit pronounced accumulation of HA in circulating blood and various organs, reaching levels as high as 40-fold above levels observed in control mice. Experiments using lymphatic and vascular injection of fluorescent HA tracers demonstrate that ongoing HA degradation in the lymphatic system and the liver is significantly impaired in Tmem2iKO mice. We also show that Tmem2 is strongly expressed in endothelial cells in the subcapsular sinus of lymph nodes and in the liver sinusoid, two primary sites implicated in systemic HA turnover. Our results establish TMEM2 as a physiologically relevant hyaluronidase with an essential role in systemic HA catabolism in vivo, acting primarily on the surface of endothelial cells in the lymph nodes and liver.


Assuntos
Células Endoteliais/enzimologia , Regulação Enzimológica da Expressão Gênica , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/biossíntese , Proteínas de Membrana/biossíntese , Animais , Ácido Hialurônico/genética , Hialuronoglucosaminidase/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout
18.
Oxid Med Cell Longev ; 2021: 5173035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712383

RESUMO

Cerebral ischemic stroke (IS) is still a difficult problem to be solved; energy metabolism failure is one of the main factors causing mitochondrion dysfunction and oxidation stress damage within the pathogenesis of cerebral ischemia, which produces considerable reactive oxygen species (ROS) and opens the blood-brain barrier. Dichloroacetic acid (DCA) can inhibit pyruvate dehydrogenase kinase (PDK). Moreover, DCA has been indicated with the capability of increasing mitochondrial pyruvate uptake and promoting oxidation of glucose in the course of glycolysis, thereby improving the activity of pyruvate dehydrogenase (PDH). As a result, pyruvate flow is promoted into the tricarboxylic acid cycle to expedite ATP production. DCA has a protective effect on IS and brain ischemia/reperfusion (I/R) injury, but the specific mechanism remains unclear. This study adopted a transient middle cerebral artery occlusion (MCAO) mouse model for simulating IS and I/R injury in mice. We investigated the mechanism by which DCA regulates glycolysis and protects the oxidative damage induced by I/R injury through the PDK2-PDH-Nrf2 axis. As indicated from the results of this study, DCA may improve glycolysis, reduce oxidative stress and neuronal death, damage the blood-brain barrier, and promote the recovery of oxidative metabolism through inhibiting PDK2 and activating PDH. Additionally, DCA noticeably elevated the neurological score and reduced the infarct volume, brain water content, and necrotic neurons. Moreover, as suggested from the results, DCA elevated the content of Nrf2 as well as HO-1, i.e., the downstream antioxidant proteins pertaining to Nrf2, while decreasing the damage of BBB and the degradation of tight junction proteins. To simulate the condition of hypoxia and ischemia in vitro, HBMEC cells received exposure to transient oxygen and glucose deprivation (OGD). The DCA treatment is capable of reducing the oxidative stress and blood-brain barrier of HBMEC cells after in vitro hypoxia and reperfusion (H/R). Furthermore, this study evidenced that HBMEC cells could exhibit higher susceptibility to H/R-induced oxidative stress after ML385 application, the specific inhibitor of Nrf2. Besides, the protection mediated by DCA disappeared after ML385 application. To sum up, as revealed from the mentioned results, DCA could exert the neuroprotective effect on oxidative stress and blood-brain barrier after brain I/R injury via PDK2-PDH-Nrf2 pathway activation. Accordingly, the PDK2-PDH-Nrf2 pathway may play a key role and provide a new pharmacology target in cerebral IS and I/R protection by DCA.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Glicólise/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/ultraestrutura , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Encéfalo/ultraestrutura , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/ultraestrutura , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/enzimologia , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais
19.
J Cardiovasc Pharmacol ; 78(6): 891-899, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596622

RESUMO

ABSTRACT: Endothelial dysfunction participates in the pathogenesis of various cardiovascular disorders, and dysregulated angiogenesis involves the vascular endothelial growth factor (VEGF)-matrix metalloproteinases (MMP) system. Nicotinamide phosphoribosyltransferase (NAMPT) is known to enhance endothelial function and angiogenesis. The study found that NAMPT overexpression protected human coronary artery endothelial cells (HCAECs) from H2O2-induced injury through promoting cell viability, inhibiting cell apoptosis, enhancing cell motility, and promoting tube formation. Through analyses based on 2 Protein-Protein Interaction databases, Mentha and BioGrid, we identified CUL5 as a protein that may interact with NAMPT, which was then validated by Co-IP experiments. Through interacting with NAMPT, CUL5 inhibited NAMPT expression. In contrast to NAMPT, CUL5 overexpression further aggravated H2O2-induced HCAEC dysfunction. In the meantime, CUL5 overexpression reduced, whereas NAMPT overexpression increased the phosphorylation of p38 and Akt and the protein levels of VEGF and MMP2. More importantly, NAMPT overexpression partially reversed the effects of CUL5 overexpression on H2O2-stimulated HCAECs and the MAPK/phosphatidylinositol 3-kinase-Akt/VEGF/MMP signaling. In conclusion, CUL5 interacts with NAMPT in H2O2-stimulated HCAECs, suppressing cell viability, promoting cell apoptosis, and inhibiting cell mobility and tube formation. NAMPT overexpression protects against H2O2-induced HCAEC dysfunction by promoting cell viability, inhibiting cell apoptosis, and enhancing cell mobility and tube formation.


Assuntos
Proliferação de Células , Proteínas Culina/metabolismo , Citocinas/metabolismo , Células Endoteliais/enzimologia , Neovascularização Fisiológica , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas Culina/genética , Citocinas/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Peróxido de Hidrogênio/toxicidade , Neovascularização Fisiológica/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/genética , Fosforilação , Proteólise , Transdução de Sinais
20.
Am J Physiol Heart Circ Physiol ; 321(5): H933-H939, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597185

RESUMO

CD4+ T cells expressing choline acetyltransferase (ChAT) have recently been shown to cause a drop in systemic blood pressure when infused into mice. The aim of this study was to determine if ChAT-expressing T cells could regulate coronary vascular reactivity. Preconstricted segments of epicardial and intramyocardial porcine coronary arteries relaxed in response to Jurkat T cells (JT) that overexpressed ChAT (JTChAT cells). The efficacy of the JTChAT cells was similar in epicardial and intramyocardial vessels with a maximum dilator response to 3 × 105 cells/mL of 38.0 ± 6.7% and 38.7 ± 7.25%, respectively. In contrast, nontransfected JT cells elicited a weak dilator response, followed by a weak contraction. The response of JTChAT cells was dependent on the presence of the endothelial cells. In addition, the response could be significantly reduced by Nω-nitro-l-arginine methyl ester (l-NAME) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) in the presence of indomethacin. JTChAT cells, but not JT cells, increased the expression of phosphorylated endothelial nitric oxide synthase (eNOS). JTChAT cells contained significantly greater levels of acetylcholine compared with JT cells; however, the nonselective muscarinic antagonist atropine and the M1 receptor antagonist pirenzepine both failed to block the dilator effect of JTChAT cells. Exogenously added acetylcholine induced only a weak relaxation (∼10%) at low concentrations, which became a contractile response at higher concentrations. These data illustrate the capacity for cells that express ChAT to regulate coronary vascular reactivity, via mechanisms that are dependent on interaction with the endothelium and in part mediated by the release of nitric oxide.NEW & NOTEWORTHY This study shows ChAT-expressing T cells can induce vasodilation of the blood vessel in the coronary circulation and that this effect relies on a direct interaction between T cells and the coronary vascular endothelium. The study establishes a potential immunomodulatory role for T cells in the coronary circulation. The present findings offer an additional possibility that a deficiency of ChAT-expressing T cells could contribute to reduced coronary blood flow and ischemic events in the myocardium.


Assuntos
Comunicação Celular , Colina O-Acetiltransferase/metabolismo , Vasos Coronários/enzimologia , Linfócitos T/enzimologia , Vasodilatação , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/genética , Vasos Coronários/imunologia , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Humanos , Células Jurkat , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Sus scrofa , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...